10 December 2021
Statement
Solve the following equation for \(x\).
\(\ln{x} + \ln{(x-1)} = 1\).
Solution
\(\ln{x} + \ln{(x-1)} = 1\)
We can use the property \(log_{c}{a} + log_{c}{b} = log_{c}{a \times b}\) and we get
\(\Leftrightarrow \ln{(x\times(x-1))} = 1\)
Since both sides are equal we can exponentiate and keep the equality
\(\Leftrightarrow e^{\ln{(x^2-x)}} = e\)
\(\Leftrightarrow x^2 - x = e\)
\(\Leftrightarrow x^2 - x - e = 0\)
The final step is to use the quadratic formula to find \(x\)
\(\Leftrightarrow x = \frac{1 \pm \sqrt{1 - 4 \times 1 \times (-e)}}{2}\)
\(\Leftrightarrow x = \frac{1 + \sqrt{1 + 4e}}{2} \lor x = \frac{1 - \sqrt{1 + 4e}}{2} \)
Notice that if we substitute \(x = \frac{1 - \sqrt{1 + 4e}}{2}\) in the original equation we get
a logarithm with a negative argument, which is not defined, therefore the only real solution is
\(x = \frac{1 + \sqrt{1 + 4e}}{2}\)