15 December 2021
Statement
Is the following function continuous at \(x = 2\) ?
\(f(x) = \begin{cases} 1 - x & x \leq 2 \\ x^2 - 2x & x > 2 \end{cases}\)
Solution
\(f(x) = \begin{cases} 1 - x & x \leq 2 \\ x^2 - 2x & x > 2 \end{cases}\)
Let's start by finding the limit of \(f(x)\) when \(x \to 2\) from both sides.
From the right side
\(\lim\limits_{x \to 2^{+}} f(x)\)
\(= \lim\limits_{x \to 2^{+}} x^2 - 2x\)
\(= \lim\limits_{x \to 2^{+}} 2^2 - 4\)
\(= 0\)
From the left side
\(\lim\limits_{x \to 2^{-}} f(x)\)
\(= \lim\limits_{x \to 2^{-}} 1 - x\)
\(= \lim\limits_{x \to 2^{-}} 1 - 2\)
\(= -1\)
This means that \(f(x)\) has a jump at \(x = 2\) since \(\lim\limits_{x \to 2^{-}} f(x) \neq \lim\limits_{x \to 2^{+}} f(x)\)
therefore the function is not continuous at \(x = 2\).